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Abstract. This paper presents a project of simultaneous localization and 

mapping (SLAM) of an indoor environment focusing on the use of autonomous 

mobile robotics. The developed work was implemented using the Lego 

Mindstorms NXT platform and leJOS NXJ as the programming language. The 

NXJ consists of an open source project which uses a tiny Java Virtual Machine 

(JVM) and provides a very powerful API as well the necessary tools to upload 

code to the NXT brick. In addition, the leJOS NXJ enables efficient 

programming and easiness of communication due to its support of Bluetooth 

technology. Thus, exploiting the mobile robotics platform flexibility plus the 

programming language potential, our goals were successfully achieved by 

implementing a simple subsumption architecture and using a trigonometry 

based approach, in order to obtain a mapped representation of the robot's 

environment.  
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1   Introduction 

One of the major problems in the field of robotics is known as SLAM (Simultaneous 

Localization and Mapping) [3], consisting of a technique used by robots and 

autonomous vehicles to build up a map within an unknown environment while at the 

same time keeping track of their current position. This is not as straightforward as it 

might sound due to inherent uncertainties in discerning the robot's relative movement 

from its various sensors. Thus, the elaboration of a project in this area has proved to 

be highly motivating for us since “solving” a SLAM problem is considered a notable 

achievement of the robotics research. 

The robotic platform chosen for this project is the Lego Mindstorms NXT [4], a 

major improvement over their previous platform, the RCX [5]. It contains a more 

powerful processor, more memory, and employs enhanced sensor and actuator suites, 

therefore being considered the easiest way to enter in the robotics world. 



For programming the NXT robot we decided to use leJOS [1, 6, 16, 17, 18], a 

firmware replacement for Lego Mindstorms programmable bricks, considered by 

many as the best platform in the moment to use software engineering ideas. The NXT 

brick is supported by leJOS NXJ [7], a project that includes a Java Virtual Machine 

(JVM) [8], so allows Lego Mindstorms robots to be programmed in the Java 

programming language. The leJOS platform proved to be the best choice for this 

project since it provides extensive class libraries that support various interesting 

higher-level functions such as navigation and behavior-based robotics, therefore 

simplifying the task of robotic piloting through the implementation of a subsumption 

architecture [9]. Also the API [10] support for the Bluetooth technology was essential 

in this work since we also implemented a client-server architecture, using the NXT 

robot as server and sending information to a client application via Bluetooth. 

Therefore, the whole logic is hosted and executed by the robot, which exchanges 

information with the client application, running on a computer. The data sent by the 

NXT is then processed and used in the environment map building. 

In order to present the work developed for this project, this paper is organized as 

follows: Initially, in Sections 2 and 3 the hardware and software platforms are 

detailed, which is the Lego Mindstorms NXT and the leJOS NXJ, correspondingly. In 

Section 4 we give an overview of the architectures behind the developed robotic 

agent, namely the subsumption and client-server architectures. Section 5 details the 

environment mapping procedures that were used. Finally, in Sections 6 and 7, we give 

details about the tests we ran and their results, stating the conclusions we achieved 

and thereby concluding the article. 

2 Lego Mindstorms NXT 

Lego Mindstorms NXT is a programmable robotics kit released by Lego in late July 

2006. The NXT is the brain of a Mindstorms robot. It's an intelligent, computer 

controlled Lego brick that lets a Mindstorms robot come alive and perform different 

operations. 

 

Fig. 1. The Lego Mindstorms NXT. In the center, the NXT brick 1. Above, the three servo 

motors 6. Below, the four sensors: touch 2, sound 3, light 4 and ultrasonic 5.  



The NXT has three output ports for attaching motors – Ports A, B and C and four 

input ports for attaching sensors – Ports 1, 2, 3 and 4. It’s possible to connect a USB 

cable to the USB port and download programs from a computer to the NXT (or 

upload data from the robot to the computer). As an alternative the wireless Bluetooth 

connection can be used for uploading and downloading.  

In the specific case of our project we simply needed two motors (connected at ports 

A and C), but we used all the input ports for sensors (Ultrasonic Sensor – port 1, 

HiTechnic [20] Compass Sensor – port 2, HiTechnic Color Sensor – port 3, Sound 

Sensor – port 4).  

3 leJOS NXJ 

The name leJOS was conceived by José Solórzano, based on the acronym for Java 

Operating System (JOS), the name of another operating system for the RCX, legOS, 

and the Spanish word "lejos".  

The leJOS NXJ [7] is a project to develop a Java Virtual Machine (JVM) for Lego 

Mindstorms NXT, as a replacement of the original firmware of the NXT brick, 

thereby allowing the NXT robots to be programmed in the Java programming 

language, providing extensive class libraries that support various interesting higher 

level functions such as navigation and behavior based robotics. 

Started out as a hobby open source project, by José Solórzano in late 1999, the 

leJOS NXJ has been evolving along the time with new features. Currently leJOS 

Research Team has launched the release 0.7, available for both Microsoft Windows 

and Linux/Mac OS X operating systems. This version includes a Windows installer to 

make installation a breeze for new users. Also, in order to facilitate the tasks of 

uploading the latest firmware into the NXT brick, uploading NXJ programs to the 

NXT brick and converting any Java project into NXT project, the leJOS Research 

Team developed a plug-in for the Eclipse IDE [11], which turn these tasks into a 

children’s play. 

From our personal experience with the leJOS NXJ platform, it proved to be an 

excellent choice, not only for this work, but for any kind of robotic projects using the 

Lego Mindstorms NXT [1], because of all the offers of the leJOS NXJ, like its 

preemptive threads, synchronization, multi-dimensional arrays and its well-

documented robotics API, for example.  

4   Architecture 

In this project we made use of two software architectures: subsumption and client-

server architectures, which are subsequently detailed.  

Subsumption architecture is a methodology for developing artificial intelligence 

robots. It is heavily associated with behavior-based robotics. The term was introduced 

by Brooks [2] (1991), which enforces a hierarchy among behaviors so that some of 

them in certain conditions would inhibit other lower priority ones. A subsumption 

architecture is a way of decomposing complicated intelligent behavior into many 



"simple" behavior modules, which are in turn organized into layers. Each layer 

implements a particular goal of the agent, and higher layers are increasingly more 

abstract. Each layer's goal subsumes that of the underlying layers. As opposed to 

more traditional artificial intelligence approaches, subsumption architecture uses a 

bottom-up design. 

The choice of this architecture allowed us to address each type of action 

independently in different behaviors and give them a set priority. This allows for 

more organized and alterable code, and avoids problems in the interaction between 

the different behaviors.  

In order to make a better research work, we approached the mapping problem in 

two fronts, both using a subsumption architecture. Basically one using the compass 

sensor and another without using it, where calculations are based on the initial 

position of the robot and its following movements. 

For the first approach mentioned above, we used the subsumption architecture to 

implement a basic navigation mechanism by developing a lowest layer “obstacle 

avoidance”, which corresponds to the rotate (turn around its center) and retreat (drive 

backward) behaviors, and on top of it lays the “environment exploration” layer, 

implemented by a drive forward behavior. Each of these horizontal layers access all 

of the sensor data and generate actions for the actuators – the main caveat is that 

separate tasks can suppress (or overrule) inputs or inhibit outputs. This way, the 

lowest layers can work like fast-adapting mechanisms (e.g. reflexes), while the higher 

layers work to achieve the overall goal. Feedback is given mainly through the 

environment. 

 

 

Fig. 2. Representation of the subsumption architecture implemented for the first approach. 

“Retreat” and “Rotate” correspond to the layer “Obstacle Avoidance” and the “Environment 

Exploration” is implemented by the “Drive Forward” behavior.  

 

For the second approach, we applied a subsumption architecture also based on the 

sensor read values, but this time the behaviors are more independent, given that even 

a behavior with a lower priority will end its turn before another takes place. This 

happens because the conditions that decide the change of behavior are calculated in 

the end of that behavior. All the measures and calculations are merged in order to map 

the environment with all the data collected by that time.   

This approach has two main behaviors, the Measure behavior and the Navigate 

behavior. When on the Measure behavior, the robot rotates 360 degrees and at the 



same time it measure the distances given by the sonar sensor on the four quadrants. 

When on the Navigate behavior, the robot drive forward a previous defined distance 

(for our tests we used distance = 30 units, where each unit correspond to a unit given 

by the sonar sensor). This way, when we join these two behaviors we get a step-by-

step very reasonable map. 

 

 

Fig. 3. Representation of the sumbsumption architecture implemented for the second approach. 

“Measure” and “Navigate” complement each other even if “Measure” has priority over 

“Navigate”. 

 

This kind of architecture (subsumption) could be implemented by the packages 

provided by the leJOS NXJ, which has an interface (Behavior) and a class (Arbitrator) 

to control the whole process: 

lejos.subsumption.Behavior 

An interface that represents an object embodying a specific behavior belonging to a 

robot. Each behavior must define the following three methods: 

– boolean takeControl() 

Returns a boolean value to indicate if this behavior should become active. For 

example, if the ultrasonic sensor indicates the robot is too close to an object, this 

method should return true. 

– void action() 

The code in this method initiates an action when the behavior becomes active. For 

example, if takeControl() detects the robot is too close to an object, the action() code 

could make the robot rotate and turn away from the object. 

– void suppress() 

The code in the suppress() method should immediately terminate the code running 

in the action() method. The suppress() method can also be used to update any data 

before this behavior completes. 

lejos.subsumption.Arbitrator 

The arbitrator regulates which behaviors should be activated, once all the behaviors 

are defined. 



The client-server architecture model distinguishes client systems from server 

systems, which communicate over a computer network. A client-server application is 

a distributed system comprising both client and server software. 

Thereby, given the fact that the robot doesn’t have a great capacity for data 

processing, not all the calculations were made by the server (NXT brick). In our 

approaches we needed to send some sensorial data and processed data for a computer 

client application to better analyze and expose that information. The nature of that 

data focus on the orientation angle of the robot (obtained with the compass sensor), 

the distances to the obstacles (acquired by the ultrasonic sensor) and the values of a 

matrix representing what it “sees”, that the robot keeps updating. This process of data 

exchange between different applications was implemented using the leJOS NXJ, via 

the Bluetooth wireless protocol.  

 

 

Fig. 4. The client-server architecture used for communication, by means of the Bluetooth 

wireless protocol, between the computer application (client) and the NXT brick (server).  

 

While the client server offered a wide range of possibilities, as remote controlled 

commands for example, we chose to keep the robot as autonomous as possible. 

Therefore this architecture was used only as a means of reporting observational data 

to the computer for visualization.  

5 Environment Mapping 

Robotic mapping [12] has been extensively studied since the 1980s. Mapping can be 

classified as either metric or topological. A metric approach is one that determines the 

geometric properties of the environment, while a topological approach is one that 

determines the relationships of locations of interest in the environment. Mapping can 

also be classified as either world-centric or robot-centric. World-centric mapping 

represents the map relative to some fixed coordinate system, while robot-centric 

mapping represents the map relative to the robot. Robotic mapping continues to be an 

active research area.  

The environment mapping with the Lego Mindstorms NXT discussed in this paper 

uses a metric, world-centric approach, in order to use the simplest possible mapping 

algorithm. As described earlier in this document, the robot moves forward from a 

known starting point until it detects an obstacle with its ultrasonic sensor which is 

simply avoided by rotating over itself or by driving backward if too close to the 

object. While doing this exploration of the robot’s environment, the NXT brick uses a 



80x80 matrix as the representation of the world. A matrix with this dimension covers 

about 4x4 meters of real terrain, allowing for a more detailed representation of small 

spaces, while simultaneously maintaining a reasonable size that the limited memory 

of the robot can support. At the same time, while doing its internal mapping, the NXT 

transmits its traveled distance (determined with the help of the motors tachometers) 

and orientation data (obtained with the compass sensor) to the client application 

running on a computer. 

Therefore, our map is built on the robot in runtime, while exploring the world and 

simultaneously on the client program, since it allows for a much richer map 

representation than the NXT display.  

For the measuring of its own position, the robot registers the value of the 

tachometers and the direction angle from the compass. In each movement the 

compass value is frequently updated in an attempt to reduce odometry errors. As the 

tachometers are much more precise than the compass, this allows the robot to have a 

reasonable precision in estimating its current location. 

Our approach to environment mapping was to use the NXT sensorial data to 

calculate the absolute position of obstacles. The robot has knowledge of its starting 

positions and then uses simple trigonometry to calculate its absolute positions and 

orientations. 

 

Fig. 5. Representation of the principle used for determining the absolute position of obstacles. 

In this right triangle: sin A = a/c; cos A = b/c. 

 

With a bit of trigonometry, the absolute position of the detected obstacles can be 

calculated by using the sine and the cosine trigonometric functions, therefore resulting 

on the following expressions to determine the x (1) e y (2) coordinates of a certain 

obstacle, given the xi and yi coordinates from the previous robot position as well as 

the traveled distance (distance) and orientation (α) of the robot. 

x = xi + distance × cos α . (1) 

y = yi + distance × sin α . (2) 

Thus, the program builds an environment map by calculating the absolute position 

of obstacles using trigonometry, robot ultrasonic sensor readings and previous 

calculations of absolute robot positions and orientations. 

These calculations allow for sweeping an area, as the robot rotates, in each 

iteration marking the walls and free spaces in that direction.  



Still, the distance sensor and the compass are relatively imprecise, and their results 

are often mistaken. To make the best of these readings, we used a system of 

probabilistic mapping based on the Bayes method. In blunt the calculated value is the 

probability of having a free space in a determined point of the matrix. A low value 

means high probability of there being an obstacle, while a high value represents a 

elevated probability of having walkable terrain. Each time a position is tested, the old 

value is combined with a new one to make an average probability (2). This new value 

conveys the probability of having a free space or an obstacle, and is relative to the 

distance. If a position has no valid value in it, it means that position has never been 

tested before, so we can’t use the previous value to calculate the new one. In that case 

we use a formula where the probability of being occupied is assumed previously (1). 

We logically defined that the probability of being occupied equals the probability of 

not being occupied. 

P(H|s) = (P(s|H) × P(H)) / (P(s|H) × P(H) + P(s|~H) × P(~H)) . (3) 

P(H|sn) = (P(sn|H) × P(H|sn-1)) / (P(sn|H) × P(H|sn-1) + P(sn|~H) × P(~H|sn-1)) . (4) 

These formulas gave satisfactory results and were therefore chosen to be the final 

method. In practice it allows us to take into account diverse factors like distance, 

repetition of results, and softening of reading errors, resulting in a well balanced and 

flexible representation of the map.  

Additionally, while the robot is designed for static environments, probabilistic 

mapping allows it to dynamically react to changes in the environment, like adding 

obstacles or opening new paths. 

All these calculations are adapted to be processed on the very limited resources of 

the robot, which then communicates the final result to the client computer via 

Bluetooth, for real-time visualization of the mapping process. 

6   Results 

Despite its limited sensors, the robotic agent is able to create a sufficiently realistic 

map of its environment.  

 

Fig. 6. Example of an environment map representation. In the left side, the real environment 

and in the right side the map obtained by the first approach.  



To exemplify the mapping capabilities of our agent, we have some results of the 

MapViewer implemented on the client side, displayed in figure 6. 

For the first approach, the compass sensor is easily affected by magnetic fields of 

nearby objects, and this can lower the quality of the mapping in some places. Another 

fact that limits this approach is the complexity of coordinate all the movements and 

all the angles that the robot (compass sensor) can read, since the robot, in this 

approach can walk to every side in 360 degrees. If the robot gets a wrong read of the 

compass, it will mark the corresponding position with a wrong value too and walk to 

a certain position thinking it is another.  

Each of the small squares in the visualization window represent a position of the 

matrix, corresponding to roughly 4.3 centimeters of real terrain in its side. The red 

points correspond to the trajectory of the robot. The rest represent the probability of 

obstacles at each position. Orange means high probability of free space, decreasing 

into shades of yellow. White means a 50% probability of free space, while lower 

probabilities (probable walls), are represented in shades of gray. Increasingly darker 

grays, represent greater certainty in the position of the walls.  

In general, orange and black spaces will dominate the areas that the robot has seen 

repeatedly or at a close distance, indicating the parts of the map where risk of error is 

lowest. 

However, our second approach, while being less flexible, works without using the 

compass, and therefore has no problem in the aforementioned situation. This way we 

get none of the problems that the compass brings, but we also don’t get the 

advantages, so if the robot rotates too much it will not know and all the following 

values and map representation will not take in account that error. However, if the 

robot keeps its navigation almost without errors, a nice and pretty realistic map will 

be the result of our second approach. 

 

Fig. 7. Example of an environment map representation. In the left side, the real environment 

and in the right side the map obtained by the second approach. 

 

In this approach, we used different measures and colors to specify the probabilities. 

Here, each square represent 10 units, where each unit correspond to a unit measured 

by the sonar sensor. The green spot is the initial position and the red one is the actual 

position. The brighter zones correspond to locals where the probability of being 



empty is high (white and brighter blues), while the darker zones correspond to the 

occupied places (dark cyan to black). 

 

Fig. 8. Example of an environment map representation. In the left side, the map obtained by 

the first approach, in the middle, the real environment and in the right side the map obtained by 

the second approach. 

 

While we are satisfied with the results, we realize that they could be vastly 

improved by using more powerful sonar and compass sensors. The fact of having only 

one sonar vastly reduces the capacity of analyzing correctly the directions that should 

be taken when facing an obstacle and the real distances to them or to walls. Another 

difficulty was the compass errors. Even though the compass often gives good results, 

a bad read causes a wrong interpretation and correspondingly a false representation of 

the map. 

7   Conclusions 

Environment mapping for real robots is a complicated problem, as the system 

resources are limited and the operation of physical parts (motors and sensors) is 

highly susceptible to errors and imprecision. The inherent uncertainties in discerning 

the robot's relative movement from its various sensors turn mapping into a very 

complex and challenging task. As a matter of fact, a robot can be compared to an 

insect, for which the environment is not interpreted as a map, and they survive only 

with a triggered response (e.g. reflexes). Therefore, it was our goal to provide the 

robot with intelligence in order to combine the information from the past and the 

present, thus creating a good mapping algorithm, and fortunately we achieved that. 

One factor that has contributed to our success was the flexibility of the Lego 

Mindstorms NXT platform associated with the potential of the leJOS API, which 

allowed us to program the NXT in the Java programming language, thereby giving us 

much more control over the robot’s sensors and actuators, manifesting itself by a 

more powerful programming than the one given by the original NXT-G [13] software 

that Lego provides.  

The probabilistic mapping method based on the Bayes’ rule proved to be a serious 

improvement, allowing for flexibility in the creation of the map. The variation of 

probabilities softens the erratic results, progressively creating a better map.  



The two approaches we used allowed us to have different processes of solving a 

map, and each is advantageous in a certain set of conditions. The first approach is 

more flexible and gives more detailed results, while the second one is more stable and 

less sensitive to sensor errors. 

As future work, since one of the biggest troubles while trying to “solve” a SLAM 

problem are the inaccuracies associated with the measured distance and direction 

travelled, then any features being added to the map will contain corresponding errors. 

In this manner, if not corrected, these positional errors build cumulatively, grossly 

distorting the map and therefore the robot's ability to know its precise location. Thus, 

it would be interesting, in this project’s concern to study techniques to compensate for 

this, such as recognizing features that it has come across previously and re-skewing 

recent parts of the map to make sure the two instances of that feature become one. 

The application in our project of other statistical techniques, such as Kalman filters 

[14, 19] or Monte Carlo methods [15], for instance, would definitely improve our 

work. 
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