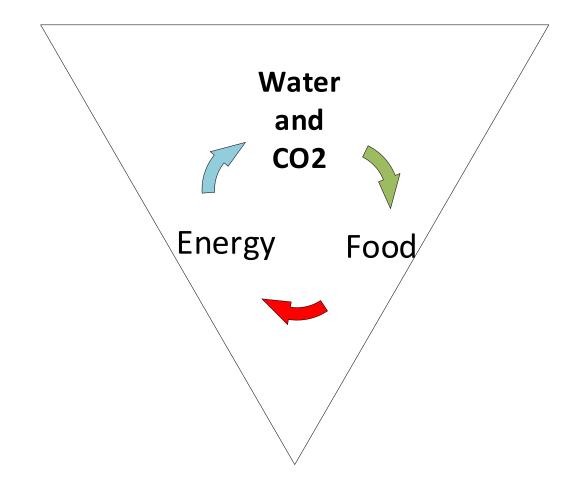
"-then the Lord God formed the man out of the dust of the ground and blew into his nostrils the breath of life, and the man became a living being." **Genesis** 2:7 (...in the beginning... the awesome power of breath...)


Black Swan Cycle for Food-Energy-Water Sustainability and Carbon Neutrality

PRESENTED AT

American Institute of Chemical Engineers Institute for Sustainability 2021 2nd FOOD-ENERGY-WATER NEXUS CONFERENCE س Brian Kolodji, PE Owner of Kolodji Corp and Black Swan, LLC

bkolodji@sbcglobal.net Office: (661) 742-1659- Cell: (713) 907-8742 Website: K-O2.com

Black Swan Cycle

Energy Carbon Management and Sustainability!

- Membrane Air Enrichment (MAE) for Fuel/Air Fired Systems
 - Directly Captures Carbon Dioxide (CO₂- a GHG) from Air
 - Raises CO₂ in Dry Flue Exhaust from under 10 up to 90+%
 - Reduces Fuel Consumed/Makes Water/Increases Capacity
- Flue Gas Extraction and Bio-Sequestration (FGXB)
 - CO2 Used to Make Biomass for Renewable Fuel & Food
 - Reduces Agriculture Water Consumption (Highest User)

Membrane Air Enrichment (MAE): Chemistry

- Simplified Gas Combustion with Air Feed (Dry at 20% O_2 , 80% N_2)
 - Stoichiometry: $CH_4 + 2O_2 + 8N_2 >> CO_2 + 2H_2O + 8N_2$
 - Fuel heating value heats <u>11 moles</u> of combustion product gas, <u>8 moles being inert N₂</u>
 - Firing temperature reduced by heating inert (nitrogen)
- A Membrane Module Provides 50% Oxygen Enrichment of Air (50% O₂, 50% N₂)
 - Low Pressure/ Energy/ Cost Membranes capture oxygen, water, and CO2 directly from air
 - New Combustion Stoichiometry: $CH_4 + 2O_2 + 2N_2 >> CO_2 + 2H_2O + 2N_2$
 - Fuel heating value heats only 5 moles of combustion product gas, with only 2 being inert N₂
 - Higher firing temperature, Up to 100% increase of Capacity for Industrial Units
 - Eliminates supplemental non-renewable (natural gas) fuel for Biogas Power

Bulk Separation of Nitrogen From CO₂, Oxygen and Water Allows Increased Capacity, Fuel and Water Savings, Higher Concentration of CO2 in Exhaust, and CO₂ Capture/ Use

INTRODUCING CONVENTIONAL MEMBRANE GAS SEPARATION TECHNOLOGY

- CO2 Removal from Field Gas/ Enhanced Oil Recovery (Commercial Scale now at Billions SCFD 40+ Years)
 - Honeywell UOP (Separex[®]) Using Spiral Wound (Sheet Type) Membrane Elements (see below from MODEC's website) to produce concentrated CO2 for enhanced oil recovery (EOR) and to produce pipeline quality (under 3% CO2) natural gas.
 - Mr. Kolodji led UOP's design and Petrobras/MODEC's commissioning/startup of first of a kind facility below
 - Recovered High Concentration CO2 from Field Gas for use in EOR with 10,000 psig pressure dense phase CO2 reinjection down hole
 - Source: MODEC Website

The FPSO Cidade de Angra dos Reis MV22 is moored in 2,149m of water in the Lula (formerly Tupi) field, Santos Basin.

MODEC converted the VLCC "M/V Sunrise IV" into the FPSO. The FPSO is capable of processing up to 100,000 barrels of oil per day and 5 million m^a of gas. The facility is designed for H₂S and CO₂ removal and is capable of reinjecting CO₂ downhole at 550 bar in addition to exporting sales gas to shore. The FPSO will initially gather production from five subsea wells and has the ability to accommodate four additional production wells in the future.

The contract is for a 15 year lease with 5 one-year options. The FPSO is designed to remain on the field for up to 20 years.

Unit Name	: FPSO Cidade de Angra dos Reis MV22		
Field Location	: Lula (formerty Tupi) Field	Storage Capacity	: 1,600,000 bbls
Country	: Brazil	Oil Production	: 100,000 bopd
Water Depth	: 2,149 m	Gas Production	: 150 mmscfd
Mooring Type	SOFEC Spread Mooring	Water Injection	: 100,000 bwpd

How membranes work for Oxygen-Enriched Air (OEA)

OEA flow in Nm3/H @ 55°C, 15 barg

	25% O	2 Purity	30% O	₂ Purity	35% O	2 Purity	40% O	2 Purity	45% O	2 Purity	50% (O₂ Purity
Model	Inlet	Outlet										
PA1010 N1	0.53	0.44	0.69	0.46	0.94	0.49	1.44	0.51				
PA1020 N1	1.80	1.50	2.34	1.57	3.18	1.63	4.87	1.68				
PA3020 N1	7.88	6.56	10.2	6.84	13.9	7.12	21.3	7.35				
PA3030 N1	13.3	11.1	17.3	11.6	23.5	12.1	36.0	12.5				
PA4030 N1	23.6	19.7	30.6	20.5	41.6	21.4	63.7	22.1				
PA4050 N1	38.8	32.4	50.3	33.8	68.4	35.4	104.7	36.9	23.0) SCF	M 4	0% O
PA6050 N1	97.7	81.6	126.9	85.4	172.2	89.5	263.8	93.7	58.3	3 SCF	M 4	0% O

PA1010 P3	0.38	0.17	0.54	0.19	0.93	0.20
PA4030 P3	19.3	8.83	27.5	9.34	47.6	9.83
PA4050 P3	31.9	14.7	45.5	15.6	78.7	16.6
PA6050 P3	70.4	32.4	100.5	34.5	173.8	36.6

Nm3/H x 37.33 = SCFH

GENERON CONVENTIONAL MEMBRANE AIR OXYGEN GAS SEPARATION TECHNOLOGY

GENERON

applications of Oxy	ABOUT US PRODUCTS	ENVIRONMENTAL SOLUTIONS	INDUSTRIES SERVED	APPLICATIONS	NEWS & BLOG	CONTACT US		
	GENERON® Oxygen Membrane Modules							
Application: O ₂								
MAWP in PSIG (barg): 203 (14.0), MAWT in °F (°C): 150 (65)								
MODEL	Membrane Casing	02-F	O2-Flow Rate @ 38.5% O2-Purity, MAWP, 77°F					
		SCFI	N	I	-PM			
210	Aluminum	0.9		:	23.3	PDF		
330	Aluminum	6.1		1	56.7	PDF		
4100	Aluminum, 316SS	12.1 313.4				PDF		
6150	Aluminum, 316SS	27.2	2	7	06.8	PDF		

AIR PRODUCTS CONVENTIONAL MEMBRANE AIR OXYGEN GAS SEPARATION TECHNOLOGY AND DATA

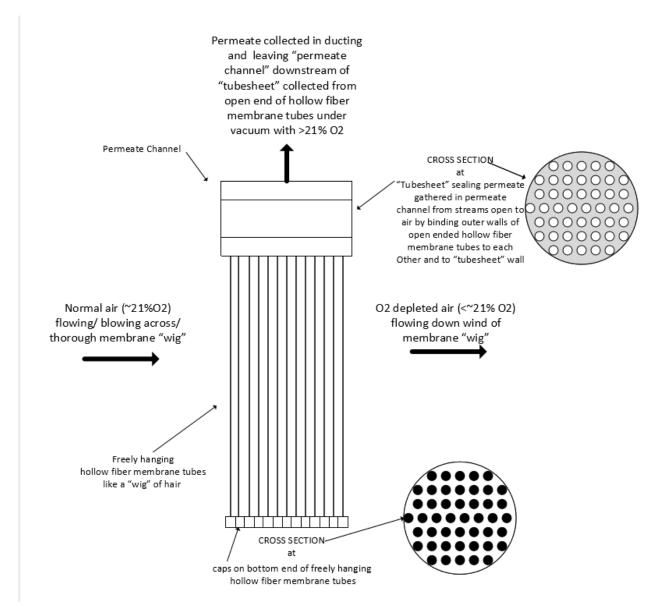
UNDER NEAR BLACK · SWAN MAE OPERATING CONDITIONS/ CONFIGURATION

MODEL	FEED PRESSURE (psig) *	OPERATING TEMPERATURE (F)	PERMEATE (VACUUM) PRESSURE (psig)	FEED (scfm)	PERMEATE (scfm)	NON-PERM (scfm)	OEA PURITY (%O2)	FEED-NONPERM PRESSURE DROP (psi)	AIR / OEA RATIO	SEPARATORS REQUIRED
PA6050N1	2	70	-10.34	1001.0	835.7	165.3	25%	0.36	1.20	839
PA6050N1	2	80	-10.34	1000.6	834.6	166.0	25%	0.45	1.20	699
PA6050N1	2	90	-10.34	1000.4	833.4	167.0	25%	0.56	1.20	587
PA6050N1	2	100	-10.34	1000.5	832.4	168.1	25%	0.68	1.20	497
PA6050N1	2	110	-10.34	1000.7	831.3	169.4	25%	0.83	1.20	424
PA6050N1	2	120	-10.34	999.8	829.1	170.7	25%	1.01	1.21	364
PA6050N1	2	70	-10.34	1000.8	658.3	342.5	30%	0.58	1.52	626
PA6050N1	2	80	-10.34	999.9	651.5	348.4	30%	0.73	1.53	519
PA6050N1	2	90	-10.34	1000.1	644.7	355.4	30%	0.91	1.55	434
PA6050N1	2	100	-10.34	1001.6	637.8	363.8	30%	1.14	1.57	366
PA6050N1	2	110	-10.34	1000.4	628.1	372.3	30%	1.41	1.59	310
PA6050N1	2	120	-10.34	1001.8	618.8	382.9	30%	1.73	1.62	265

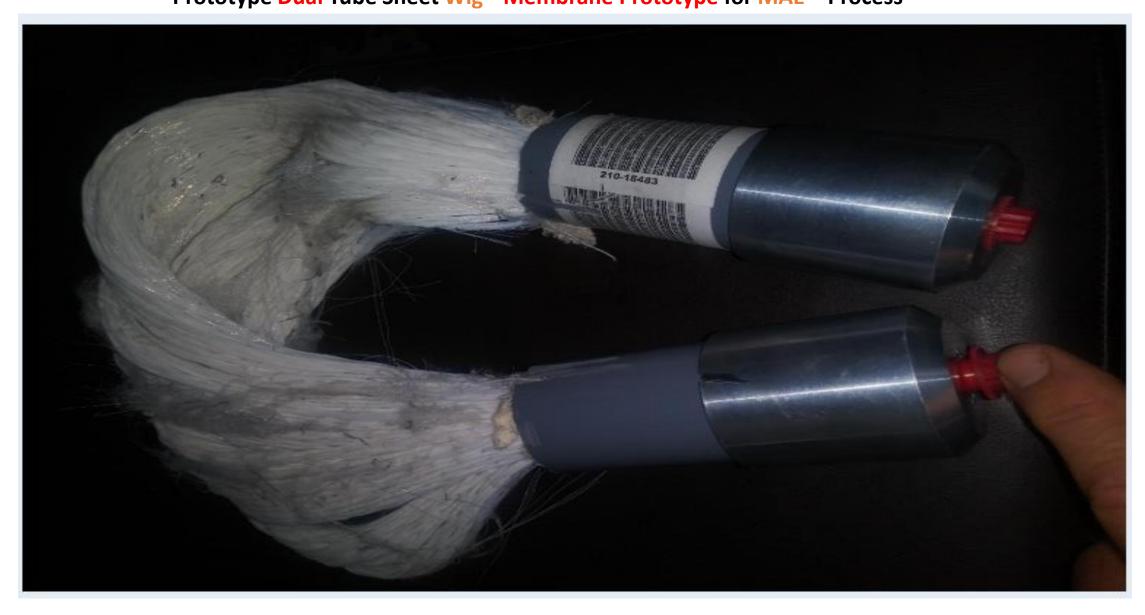
Generon Model 6150 PerformanceConventional Oxygen Membrane Module Simulated Under NEAR BLACK · SWAN MAE Operating Conditions

	Module	ype and Conditions					
Standard Pressure	14.696 psi	Active Length	2.42 ft				
Standard Temperature	25.00 C	Primary Flux Values	50/50 Flux - 6150CP				
Module Type	6150 CP	Isothermal Model		No			
Fiber Type	50/50 Combined Polymer	Permeate Back Pressure		3.70 ps	8		
Number of Fibers	553500	Packing Factor		0.52			
Fiber OD	135 micron		ormation (OF				
Fiber ID	95 micron	Customer Flow					
Feed Stream	Conditions	Mode	Results: Pe	ermeate Stream			
and the second states	100 00 00511	The second	Permeate Flow (per module)		163.67 SCFH		
Feed Flow (per module)	430.00 SCFH	Permeate Temperature		25,00 C			
	05.0010	Permeate Pressure (A		3.70 p			
eed Temperature	25.00 C	Permeate Pressure Dr	0.95 psi				
and Descences (Albertulat)	10.00		Recovery (Permeate/Feed)*		%		
eed Pressure (Absolute)	19.20 psia	HC Recovery (Permea	N/A				
lobbe index	0.0 BTU/ft3	Wobbe Index		0.0 BTU/h3			
2:CO Ratio* (If Applicable)	N/A	Contraction of the second	H2:CO Ratio* (If Applicable)		A		
Component	Feed Mole Fraction	Componen		Permeate Mole Fraction	Componen Recovery		
Oxygen 0.2100			Oxygen	the second s			
Nitrogen	0.7900		0.6198				

BLACK · SWAN Wig™ Membrane Prototype


Vacuum Testing of PCCP-1 and PCCP-2 Fiber Types (Beaker Unit Evaluation)

Beaker units test devices containing PCCP-1 and PCCP-2 hollow fibers were evaluated for their O2 enrichment capabilities by having ambient air (20C) on the feed side and a vacuum of 4 psia (-22" of Hg) on the bore side of the fibers. The permeate gas was analyzed on the discharge of the vacuum pump used and evaluated for permeate flow and composition (O2 and CO2). In all measurements the ambient air composition was maintained during the test using a hair drier to exchange out the air in the beaker unit shell space. Below is a photo of the test system layout.



*Photo, instruments and bench/lab measurements courtesy of Mr. Marc Straub, Vice President Membrane Mfrg, Generon

Very Low Energy/ High Performance/ Lowest Pressure Drop/ Lower Manufacturing Cost Diagram of Single Tube Sheet Wig[™] Membrane Design for MAE[™] Process

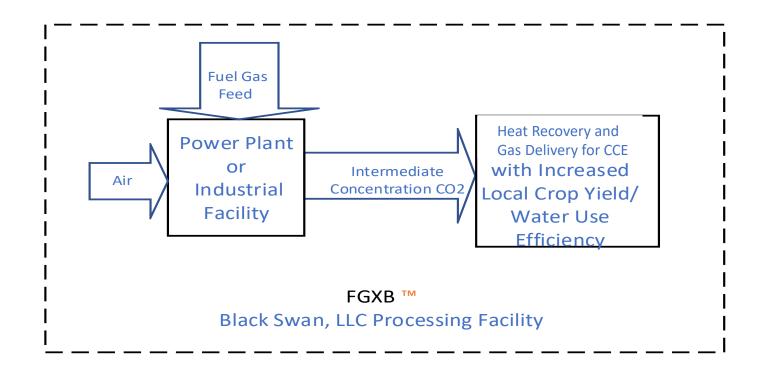
BLACK · SWAN Prototype Dual Tube Sheet Wig[™] Membrane Prototype for MAE[™] Process

Introducing Patent Pending MAE[™] Process/ Wig[™] Membrane Design Benefits

• MAE Wig based on proven science/technology/materials used/commercialized for decades

• MAE Wig lowest membrane operating and capital cost- under 40% of cryogenic technology costs

• MAE Wig higher performance over conventional membranes validated by two major manufacturers


FGXB Chemistry Profits from The Power of Breath!

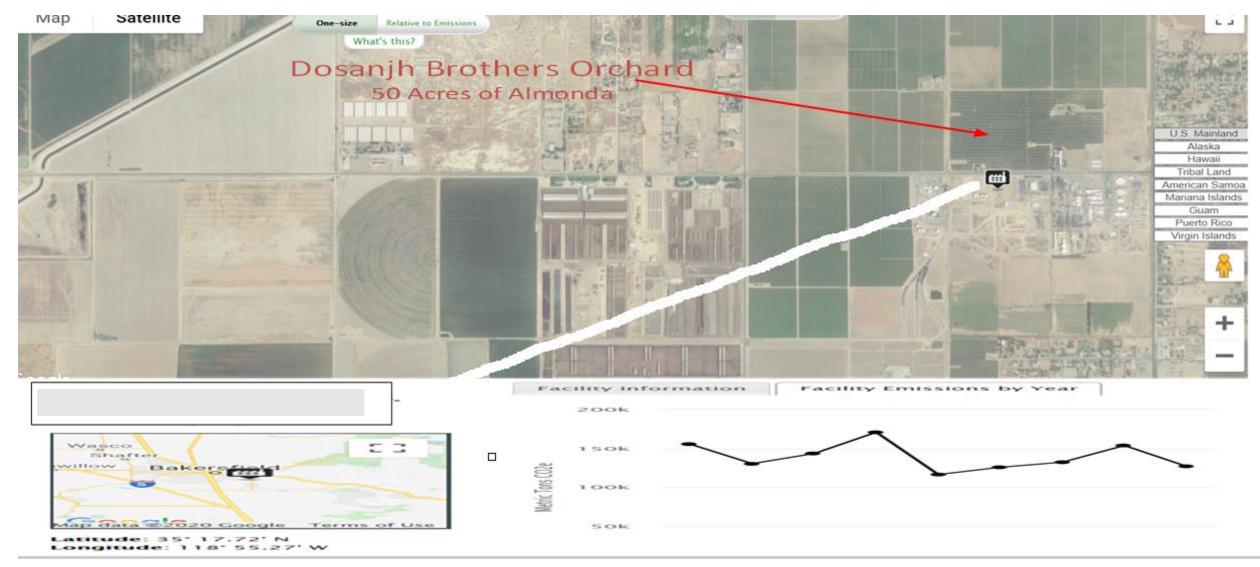
- Fauna: AIR at 400ppm (0.04%) CO₂ is exhaled as BREATH at 40,000ppm (4%) CO₂
 - Respiration "burns" carbohydrates, such as sugar, eg. glucose, $C_6(H_2O)_6$, for life energy
 - $6O_2 + C_6(H_2O)_6$ (stored energy) >> $6CO_2 + 6H_2O + Energy$ (eg. in the form of muscle movement)
 - 21% O₂ level in AIR correspondingly drops 17% in exhaled BREATH due to CO₂ make
 - Humans increase CO_2 concentration in one breath by a factor of 100, making 2 gigatons per year
 - Transport/ Power/ Industry Sectors similarly produce over 40 Gigatons of CO2 per year
 - CO2 production is nescessary for life... Why??? The ultimate sustainability cycle
- Flora: CO2 is consumed photosynthetically to make oxygen and cellulose
 - $6CO_2 + 6H_2O + sunlight >> 6O_2 + C_6(H2O)_6$ (cellulose, a sugar and building block of plants)
 - Over 95% of plant growth is dependent upon carbon supplied by CO₂
 - Plant growth rate can up to double if local plant biosphere CO₂ is raised 50%

Increase agricultural yield and water use efficiency, in world's largest water consumer

Flue Gas Extraction and Biosequestration

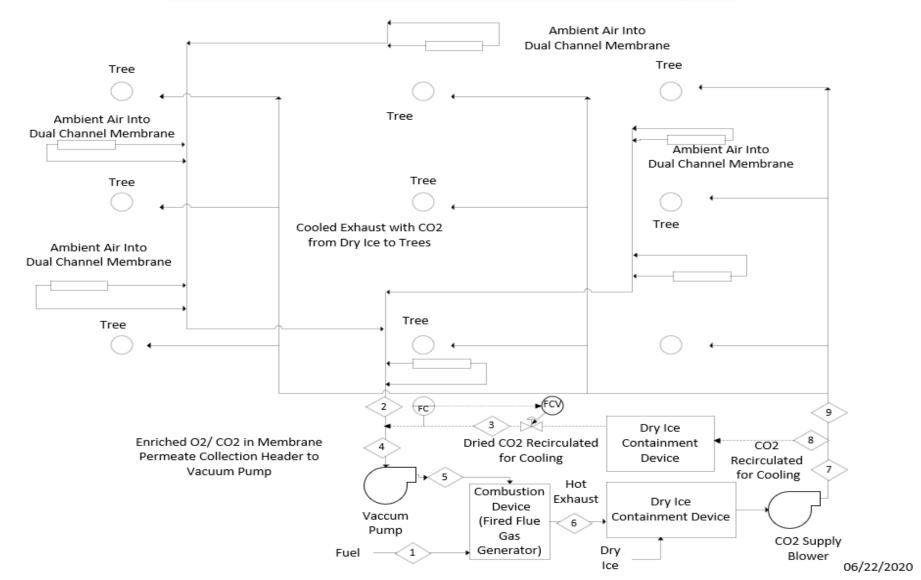
FGXB [™]

Profit from CO2 without concentrating the flue gas, but cooling and dispersing to crops!


CO2 CROP ENRICHMENT (CCE)

(Atmosphere around Crop raised to min 600 ppm CO₂, or 150% that of air!)

- Used for almost a hundred years throughout the world (especially northern hemisphere) in greenhouses
- Researched/ Proven for past 40 years in open air systems (without greenhouses)
 - Free Air Carbon Enrichment (FACE) Systems by Brookhaven National Laboratory (Dr. George Hendrey/ Keith Lewin)
 - By United States Department of Agriculture (Dr. Bruce Kimball)
 - Commercialized with Black Swan Project Pilot/ Demonstration Facility Funded by California Department of Food and Agriculture
- Proven to Boost Agricultural Yield and Save Water (see literature sources below):
- 1967: Ford & Thorne (Corn +70% yield)
- 1983: Rogers (Corn and Soybean Water Use Efficiency +100%)
- 1984: Havelka (Wheat +35% yield)
- 1985: Acock & Allen (Soybean +40% biomass)
- 1985: Bhattacharya et al (Sweet Potatoes +83% yield)


- 1986: Cure & Acock (Cotton +200% yield)
- 1987/1989: Kimball et al (Cotton +100% yield)
- 1993: Kimball et al (Rice/Soybeans)
- 1994-7: Bindi et al: Grapes (+50 to 70% yield)
- 2007: <u>Kimbal</u>l et al: Citrus (up to +200% yield)

BLACK · SWAN FGXB/MAE Demonstration Site

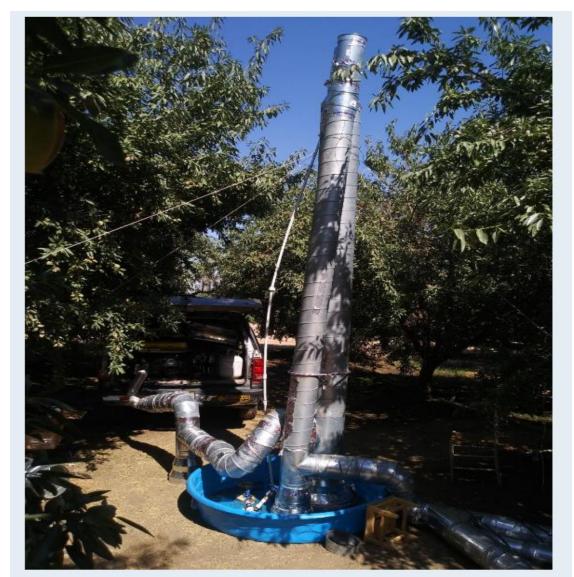
MAE/FGXB[™] Pilot Scale BIOGAS Facility Site

Membrane Air Enrichment Process Flow Diagram

19

Simulated Biogas Material Balance 50 T/Y CO₂ MAE/FGXB[™] Pilot

	Tabl	e 1							
Heat and Material Balances for New MAE	Process: BA	SIS 50 Tons	s/Year CO2 fo	or 10 almor	nd trees Us	ing Quenc	<u>h</u>		
	50% O2 Er	nrich Feed	Case- With ne	escessary F	Recirculatio	on to prote	ct existing	Combustion D)evice
	Benefits:	Lower Yet	Operating Co	st Crop Ca	rbon Enrich	ment Syst	em		
	40% Incre	ase in Duty	of Existing	Steam/ Pov	wer Genera	ation Devic	e .		
Stream Numbers	1	2	3	4	5	6	7	9	
Process Parameters/ Stream Names	Fuel****	Comb O2	Dry Recirc	Vac Suct	Vac Disch	Flue Gas	Cool FG	Crop Carbon	
Absolute Pressure, psia	25	3.8	3.8	3.8	16	15	16	15	
Temperature F **	Ambient	Ambient	50	Ambient	200	350	170	60	
Gas Standard Volumetric Rate, SCFM	6.32	25.81	9.65	35.46	35.46	41.78	28.95	19.30	
Total Molar Flow Rate- LbMole/Hr)	1	4.083	1.52666667	5.609667	5.609667	6.609667	4.579667	3.053	
	Mole Bala	nce, lb mo	ls/hr						
Methane (CH4- LbMole/Hr)	1	0	0	0	0	0	0	0	
Oxygen (O2- LbMole/Hr)	0	2	0	2	2	0	0	0	
Nitrogen (N2- LbMole/Hr)	0	2	1	3	3	3	3	2	
Water (H2O- LbMole/Hr)	0	0.08	0	0.08	0.08	2.08	0	0	
Carbon Dioxide (CO2- LbMole/Hr)	0	0.003	0.52666667	0.529667	0.529667	1.529667	1.579667	1.053	
	Mole Perc	ent							
Methane (CH4- Mole Fraction)	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Oxygen (O2- Mole Fraction)	0.0	49.0	0.0	35.7	35.7	0.0	0.0	0.0	
Nitrogen (N2- Mole Fraction)	0.0	49.0	65.5	53.5	53.5	45.4	65.5	65.5	
Water (H2O- Mole Fraction)	0.0	2.0	0.0	1.4	1.4	31.5	0.0	0.0	
Carbon Dioxide (CO2- Mole Fraction)	0.0	0.07	34.5	9.4	9.4	23.1	34.5	34.5	•
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	
	Mass Bala	nce, Tons/	yr ***						
Methane (CH4- Tons/yr)	17.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Oxygen (O2- Tons/yr)	0.0	70.1	0.0	70.1	70.1	0.0	0.0	0.0	
Nitrogen (N2- Tons/yr)	0.0	61.3	30.7	92.0	92.0	92.0	92.0	61.3	
Water (H2O- Tons/yr)	0.0	1.6	0.0	1.6	1.6	41.0	0.0	0.0	
Carbon Dioxide (CO2- Tons/yr)	0.0	0.1	25.4	25.5	25.5	73.7	76.1	50.7	
Total , Tons/yr	17.5	133.1	56.0	189.2	189.2	206.7	168.1	112.1	
* Dry Ice CO2 contribution 0.05 lbmols/hr	, all		***Daily Usage only 12 hours/ day, Annual						
water assumed removed in this step.			usage is 9 ou				out leaf.)		
Temperatures estimated only for			**Equivale	ent to abou	ut 10 lbs of	fuel per ho	our		
			in the form	f m ath an		o or goodi			


35 % , up from 9% CO2

CDFA* Funded Demonstration Site Patented/ Patent Pending FGXB[™] / MAE[™]

- Industry Supply Potential of up to 200,000 T/Y CO2 for 100s of acres of surrounding crops
 - Demonstration facility scale is 10,000 Tons CO₂/Year Processing (T/Y)
 - Based on Four other FGXB facilities piloted since 2017 at under 100 T/Y.
 - 5th FGXB Pilot installation (July 2020- 100 T/Y, 9 trees, well under 1 acre)- Cap Cost \$2000
 - Demonstration FGXB entails 2000 trees over 20 acres (\$50,000 Capital) Target Q1-2021
 - MAE bench scale tests since 2018, MAE Pilot on same site Cap \$80,000, target Q2-2021

*California Department of Food and Agriculture (CDFA) State Water and Environmental Efficiency Program (SWEEP) Awarded to Dosanjh Bros for Almond Orchard Crop Carbon Enrichment Project

Quench Column for 10,000 Ton/Year CO₂ FGXB/ MAE[™] Demonstration Site

BLACK · SWAN Patent Pending CO₂ Disperser for 10,000 Ton/Year FGXB/MAE[™] Demonstration Site

Field Measurement Instruments (Soil Moisture/ Weather Station/ CO2 Meters) for 10,000 Ton/Year

FGXB/MAE™ Demonstration Site

CO2 to Trees with Weather Station (top photo) / Soil Moisture/ CO2 Meters and Data Logger (bottom)

**Photo instruments and field measurements courtesy of Dr. Brian Marsh, Director, University of California, Agriculture and Natural Resources, Cooperative Extension-Kern County

July 2, 2020 Static Measurements From CO₂ Meters During Commissioning of 50 Ton/Year Pilot

FGXB/MAE™ Demonstration Site

CO2

ppm

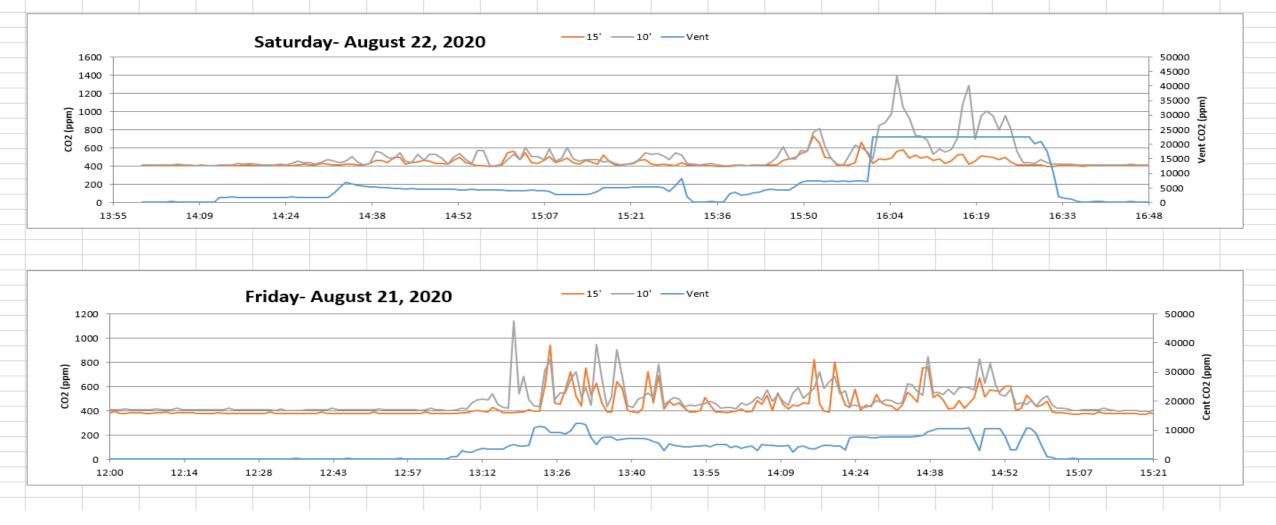
Static measurements Between 12:45 and 13:00

Height Tree Tree Tree Tree Tree Tree Between tree 5' 400 800 rows 7' 900 700 500 10' 400 300 Tree Tree Tree Tree Tree Tree 3' 700 7' 1100 300 10' 400 400 300 Tree Tree Tree Tree Tree Tree 700 10' Between trees In tree row Tree Tree Tree Tree Tree Tree Between tree 7' rows 300 10' 300 Tree Tree Tree Tree Tree Tree

Measurements at vents

ranged from 21000 to 36000+ ppm Sensor reads to nearest 100

**Photo instruments and field measurements courtesy of Dr. Brian Marsh, Director, University of California, Agriculture and Natural Resources, Cooperative Extension-Kern County

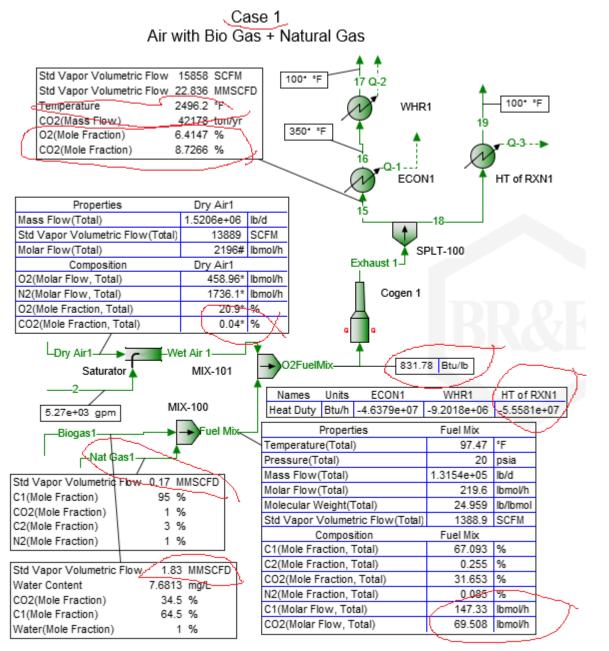

Tree	with CO2 enhancement
Tree	with continuous CO2 monitoring

North

General wind direction

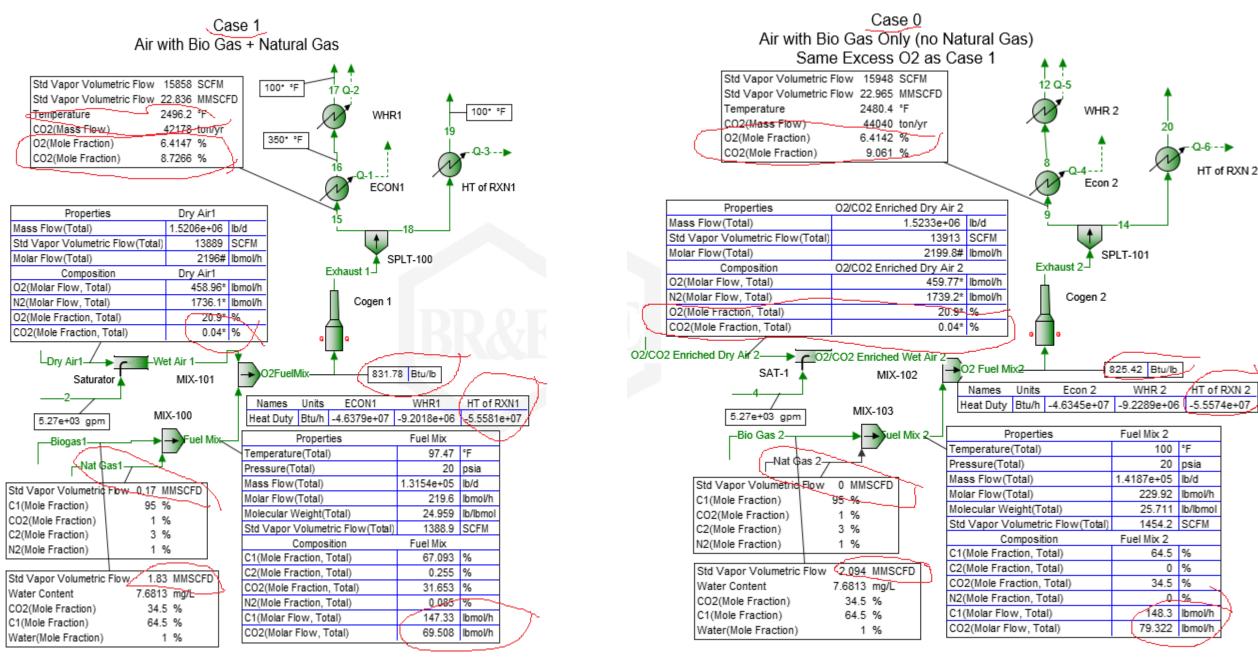
August 2020 Field Measurements From CO₂ Meters During Post Commissioning of 100 Ton/Year Pilot

FGXB/MAE™ Demonstration Site

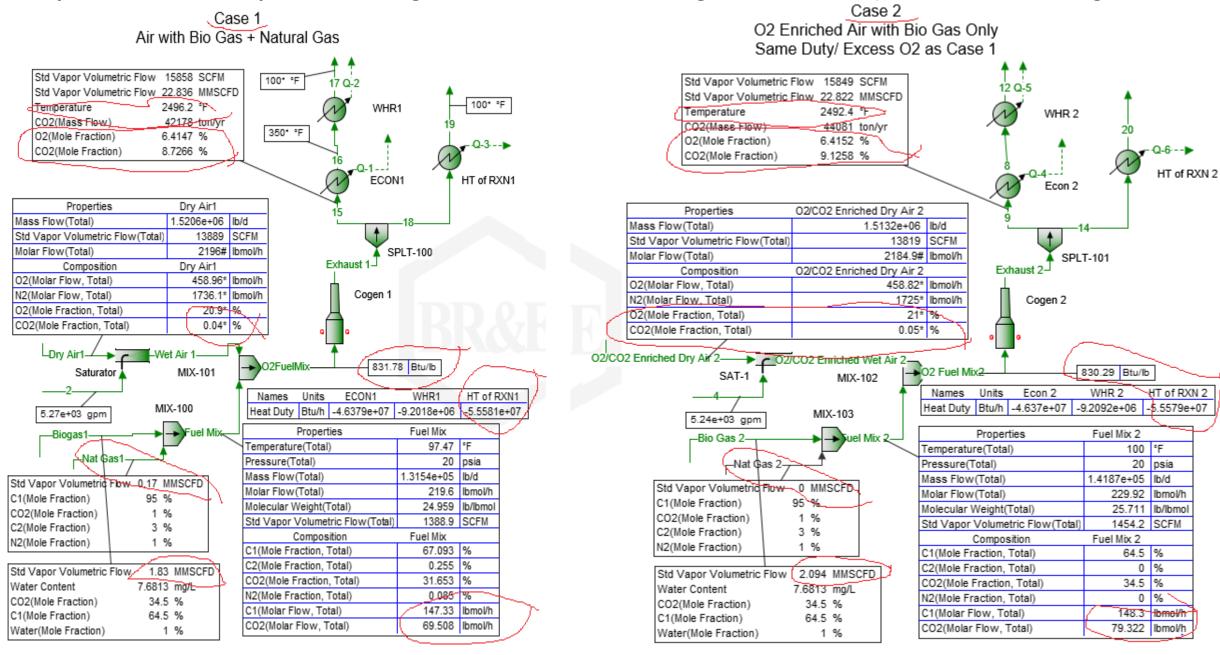

**Photo instruments and field measurements courtesy of Dr. Brian Marsh, Director, University of California, Agriculture and Natural Resources, Cooperative Extension-Kern County

BLACK · SWAN MAE[™] 2021 Candidate Commercial Sites

Internal combustion engine driven power plants (1 to 3MW) at California Sanitation Districts


- Fuel: Biogas supplemented with 10% natural gas using 43% O₂ Enrichment
 - Supplemental Natural Gas Savings: 100%
 - Increased Power Generation: 20%
 - Target return on investment of under one year
 - Total Installed Cost Estimates of \$300,000 to 500,000

BLACK · SWAN MAE Commercial Site Normal Operation Case 1 using Biogas and Natural Gas

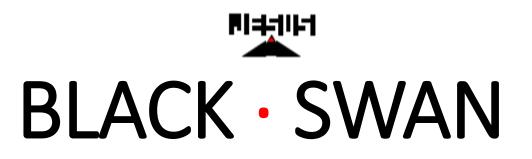

BLACK · SWAN MAE Commercial Site

Comparison of Normal Op Case 1 vs. Biogas without Natural Gas using Standard Air (Case 0, below note low T/Heat Value)

BLACK · SWAN MAE Commercial Site

Comparison of Normal Op Case 1 vs. Biogas without Natural Gas using O2 Enriched Air (Case 2, below note higher T/Heat Value)

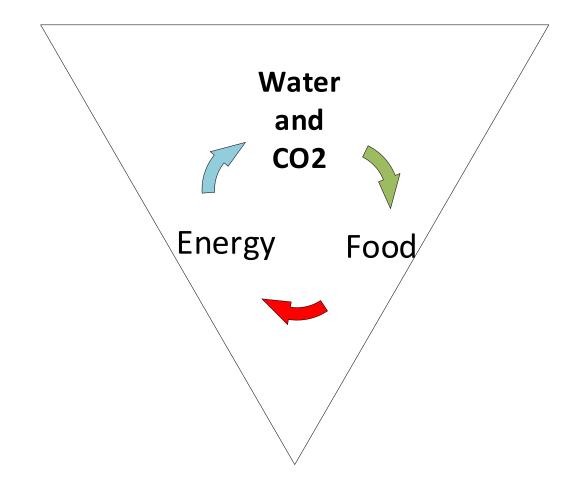
MAE/FGXB[™] 2022 Candidate Commercial Sites


Natural gas fired 10 to 60 Million BTU/Hour Industrial Scale Boilers Bordered by Orchards

- Both candidate sites using 43% O₂ Enrichment:
 - Winery with 40,000 TPY CO₂ with 100 Acres of Citrus on adjacent plot
 - County Facility with 40,000 TPY CO₂ from Boilers with 500 acres crops
 - Manufacturer with 80,000 TPY CO₂ from Boilers with 1000 acres of crops
 - Refinery Cogen with up to 200,000 TPY CO₂ with 1000 acres crops
 - Natural Gas Savings Target: 40%
 - 100% added profit from crop carbon enrichment in neighbor orchards
 - Target return on investment of under two years
 - Total Installed Cost Estimates of \$2,000,000 to 4,000,000

<u>Membrane Air Enrichment (MAE ™)</u>

Estimated Conventional vs. MAE Boiler Performance Comparison


- Basis: 15MMBTU/Hr Boiler, 1211 scfm, 38% O₂ combustion air
 - Conventional 6150 Membrane System (38% O₂):
 - 203 psig Feed Air Requires 45 membranes
 - 4.5 psig Feed Air Requires 449 membranes
 - Lower Cost MAE Wig[™] Membrane Produces 43% O₂ Under Vac:
 - Passive (No Air Compression) needing under 300 membranes
 - Based on Prototype/ Bench Scale Tests

- Achieve Carbon Neutrality in CA by 2025!
- Achieve US Carbon Deceleration at -0.04 GT/Yr² by 2030!
- Achieve Carbon Neutrality around the World by 2035.

How? Profitably making Fuel, Water, and Sugar with...!

Black Swan Cycle

 KO_2

Black Swan Cycle for Food-Energy-Water Sustainability and Carbon Neutrality

PRESENTED AT

American Institute of Chemical Engineers Institute for Sustainability 2021 2nd FOOD-ENERGY-WATER NEXUS CONFERENCE

Brian Kolodji, PE Owner of Kolodji Corp and Black Swan, LLC

bkolodji@sbcglobal.net Office: (661) 742-1659- Cell: (713) 907-8742 Website: K-O2.com

"Jesus said to them, again, "Peace be with you. As the Father has sent me, so I send you."

And when He had said this, he breathed on them and said to them, "Receive the Holy Spirit."

35