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I N T R O D U C T I O N  

Migration of chemicals in the environment is important to a variety of disciplines. Biolo-

gists are concerned with movement of limiting nutrients such as nitrogen and phospho-

rus that are essential for plant growth. Toxicologists are concerned with estimating hu-

man and environmental risk from exposure to toxic chemicals. Climatologists need to 

understand the sources and sinks for greenhouse gases. Regulatory agencies must eval-

uate estimated future release of and exposure to hazardous materials and compare them 

to regulatory and health standards. Geologists, ecologists, and meteorologists are inter-

ested in biogeochemical cycles and how they are influenced by anthropogenic activities. 

Scientists, engineers, and regulators are concerned with cleanup of contaminated sites 

and minimizing risk to humans and the environment.  

This textbook evolved from an interdisciplinary class taught to students with diverse 

backgrounds who typically had an advanced grasp of some of the material covered and 

relatively little background in other portions. Engineering students are comfortable with 

mathematics but often have limited backgrounds in chemistry, biology, and/or geology. 

Biology and geology students may have difficulty with quantitative treatment requiring 

differential equations. The goal of this textbook is to introduce an interdisciplinary, non-

specialist audience to fundamental concepts of how chemicals migrate in the environ-

ment and how this migration is estimated in risk assessments. Mathematical treatment 

beyond the elementary level is sometimes presented with the intent of pushing students 

with greater interest or more complete backgrounds toward more complete understand-

ing. This material is not essential to the text and can be skipped (or simply not included 

in tests) by choice of the instructor.  

The text should also be useful for people without specialized knowledge who work 

with fate and transport in the environment and/or as an introduction to the field. Math-

ematical treatment up to partial differential equations is present but not required to fol-

low most of the material presented. Increasingly, most calculations of fate and transport 

are performed by practitioners with specialized computer codes. The focus of this text is 

on fundamental principles and relatively simplified calculations that explain the concepts 

and fundamental assumptions underlying most codes predicting contaminant transport, 

rather than a guide to computer codes.  

The text contains a series of chapters providing coverage of background concepts 

preceding chapters covering the major environments of groundwater, surface water, and 

the atmosphere. Depending upon the training of the students or reader, some of these 

chapters could be skipped and/or reordered. The mathematical treatment of contami-

nant transport in all media is remarkably similar. The essential similarities between the 



models used in surface water, groundwater, and air pollution are emphasized in order to 

provide unifying concepts and bolster understanding of concepts. Generalized transport 

phenomena concepts are introduced in the first two chapters followed by more specific 

and detailed application in the media specific chapters.  

The text is supplemented with student exercises that can be assigned with homework or worked 

on in class in cooperative groups. All figures included in the text, figures associated with 

homework solutions, and supplementary materials are available to the instructor in color to 

facilitate classroom presentation and explanation of the material. Please visit the author’s Web 

site at www.windowoutdoors.com to access these materials. For instructors a fully worked 

solutions manual to every problem in the text is available. To receive these solutions please 

contact the publisher at the address or email provided on the copyright page.  


